Part Number Hot Search : 
06VDK1 UL1540 UL1540 9435G FMS00 UL1540 FA4313U 4CDDT
Product Description
Full Text Search
 

To Download IRFB4321GPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 96215
IRFB4321GPBF
Applications l Motion Control Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l Hard Switched and High Frequency Circuits Benefits l Low RDSON Reduces Losses l Low Gate Charge Improves the Switching Performance l Improved Diode Recovery Improves Switching & EMI Performance l 30V Gate Voltage Rating Improves Robustness l Fully Characterized Avalanche SOA l Lead-Free l Halogen-Free
HEXFET(R) Power MOSFET
VDSS RDS(on) typ. max. ID
D
150V 12m: 15m: 83A
D
G S
G
D
S
TO-220AB IRFB4321GPBF
D S
G
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS (Thermally limited) TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy
Max.
83 59 330 330 2.2 30 120 -55 to + 175 300 10lbfxin (1.1Nxm) Typ. --- 0.50 --- Max. 0.45 --- 62
c
Units
A W W/C V mJ
d
e
Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw
C
Thermal Resistance
Symbol
RJC RCS RJA Junction-to-Case
g
Parameter
Units C/W
Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
www.irf.com
1
01/06/09
IRFB4321GPBF
Static @ TJ = 25C (unless otherwise specified)
Symbol
V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) IDSS IGSS RG(int)
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
150 --- --- 3.0 --- --- --- --- --- --- 150 12 --- --- --- --- --- 0.8
Conditions
--- V VGS = 0V, ID = 250A --- mV/C Reference to 25C, ID = 1mAd 15 m VGS = 10V, ID = 33A 5.0 V VDS = VGS, ID = 250A 20 A VDS = 150V, VGS = 0V 1.0 mA VDS = 150V, VGS = 0V, TJ = 125C 100 nA VGS = 20V -100 VGS = -20V ---
f
Dynamic @ TJ = 25C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
Min. Typ. Max. Units
130 --- --- --- --- --- --- --- --- --- --- --- 71 24 21 18 60 25 35 4460 390 82 --- 110 --- --- --- --- --- --- --- --- --- S nC
Conditions
VDS = 25V, ID = 50A ID = 50A VDS = 75V VGS = 10V VDD = 75V ID = 50A RG = 2.5 VGS = 10V VGS = 0V VDS = 25V = 1.0MHz
ns
f f
pF
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)Ad Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
Min. Typ. Max. Units
--- --- --- --- 83 330 A A
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 50A, VGS = 0V ID = 50A VR = 128V, di/dt = 100A/s
G S D
--- --- 1.3 V --- 89 130 ns --- 300 450 nC --- 6.5 --- A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
f
Notes: Calculated continuous current based on maximum allowable junction temperature. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.095mH RG = 25, IAS = 50A, VGS =10V. Part not recommended for use above this value.
Pulse width 400s; duty cycle 2%. R is measured at TJ approximately 90C
2
www.irf.com
IRFB4321GPBF
1000
TOP
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V
TOP
100
BOTTOM
VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V
10
10
5.0V
1
5.0V
0.1 0.1 1
60s PULSE WIDTH Tj = 25C
1 10 100 0.1 1
60s PULSE WIDTH Tj = 175C
10 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
3.5
Fig 2. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 50A
3.0
ID, Drain-to-Source Current()
VGS = 10V
100
2.5
TJ = 175C
10
2.0
1
TJ = 25C VDS = 25V
1.5
1.0
60s PULSE WIDTH
0.1 3.0 4.0 5.0 6.0 7.0 8.0 9.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
TJ , Junction Temperature (C)
Fig 3. Typical Transfer Characteristics
7000 6000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS, Gate-to-Source Voltage (V)
ID= 50A VDS = 120V VDS= 75V VDS= 30V
16
C, Capacitance (pF)
5000 4000 3000 2000 1000
Ciss
12
Coss
8
4
Crss
0 1 10 100
0 0 20 40 60 80 100 120 QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRFB4321GPBF
1000
1000
OPERATION IN THIS AREA LIMITED BY R DS(on) 100sec 1msec
ISD , Reverse Drain Current (A)
100
ID, Drain-to-Source Current (A)
TJ = 175C
10
100
10
10msec
1
TJ = 25C
1 Tc = 25C Tj = 175C Single Pulse 0.1 1 10 DC
VGS = 0V
0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4
100
1000
VSD, Source-to-Drain Voltage (V)
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
V(BR)DSS , Drain-to-Source Breakdown Voltage
Fig 8. Maximum Safe Operating Area
190
90 80 70
ID , Drain Current (A)
180
60 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (C)
170
160
150
140 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (C)
Fig 9. Maximum Drain Current vs. Case Temperature
5.0
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
500
4.0
400
ID 13A 20A BOTTOM 50A
TOP
Energy (J)
3.0
300
2.0
200
1.0
100
0.0 0 20 40 60 80 100 120 140 160
0 25 50 75 100 125 150 175
VDS, Drain-to-Source Voltage (V)
Starting TJ, Junction Temperature (C)
Fig 11. Typical COSS Stored Energy
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
4
www.irf.com
IRFB4321GPBF
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20 0.10 0.05
J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3
Ri (C/W)
(sec)
1
2
0.01
0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE )
Ci= i/Ri Ci= i/Ri
0.085239 0.000052 0.18817 0.00098 0.176912 0.008365
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 0.001 0.01 0.1
0.001 1E-006 1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Duty Cycle = Single Pulse 0.01
Avalanche Current (A)
10
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse)
0.05 0.10
1
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C.
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
120
EAR , Avalanche Energy (mJ)
100
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 50A
80
60
40
20
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
175
0 25 50 75 100 125 150
Starting TJ , Junction Temperature (C)
PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB4321GPBF
6.0
40
VGS(th), Gate threshold Voltage (V)
5.0
ID = 1.0A ID = 1.0mA ID = 250A
30
IRRM - (A)
4.0
20
3.0
10
2.0
IF = 33A VR = 128V TJ = 125C TJ = 25C 100 200 300 400 500 600 700 800 900 1000
1.0 -75 -50 -25 0 25 50 75 100 125 150 175
0
TJ , Temperature ( C )
dif / dt - (A / s)
Fig 16. Threshold Voltage Vs. Temperature
40
Fig. 17 - Typical Recovery Current vs. dif/dt
3200 2800
30
2400
20
QRR - (nC)
IF = 50A VR = 128V TJ = 125C TJ = 25C
IRRM - (A)
2000 1600 1200 800 400 0 IF = 33A VR = 128V TJ = 125C TJ = 25C 100 200 300 400 500 600 700 800 900 1000
10
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / s)
dif / dt - (A / s)
Fig. 18 - Typical Recovery Current vs. dif/dt
3200 2800 2400
Fig. 19 - Typical Stored Charge vs. dif/dt
QRR - (nC)
2000 1600 1200 800 400 0 IF = 50A VR = 128V TJ = 125C TJ = 25C 100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / s)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB4321GPBF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple 5% ISD
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD VDS
Fig 22b. Unclamped Inductive Waveforms
+
VDD D.U.T VGS Pulse Width < 1s Duty Factor < 0.1%
90%
VDS
10%
VGS
td(on) tr td(off) tf
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Id Vds Vgs
L
0
DUT 1K
VCC
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
7
IRFB4321GPBF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
@Y6HQG@) UCDTADTA6IADSA7#" BQ7A Ir)AABAAssvAvAhAirA vqvphrAAChytrAAArrA Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqAAArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S 96U@A8P9@) 2G6TUA9DBDUAPA 86G@I96SA@6S XX2XPSFAX@@F Y2A68UPSA8P9@
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2009
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRFB4321GPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X